Функция рост в excel

МНК: Экспоненциальная зависимость в EXCEL

Метод наименьших квадратов (МНК) основан на минимизации суммы квадратов отклонений выбранной функции от исследуемых данных. В этой статье аппроксимируем имеющиеся данные с помощью экспоненциальной функции.

Метод наименьших квадратов (англ. Ordinary Least Squares , OLS ) является одним из базовых методов регрессионного анализа в части оценки неизвестных параметров регрессионных моделей по выборочным данным. Основная статья про МНК – МНК: Метод Наименьших Квадратов в MS EXCEL .

В этой статье рассмотрена только экспоненциальная зависимость, но ее выводы можно применить и к показательной зависимости, т.к. любую показательную функцию можно свести к экспоненциальной:

y=a*m x =a*(e ln(m) ) x = a*e x*ln(m) =a*e bx , где b= ln(m))

В свою очередь экспоненциальную зависимость y=a*EXP(b*x) при a>0 можно свести к случаю линейной зависимости с помощью замены переменных (см. файл примера ).

После замены переменных Y=ln(y) и A=ln(a) вычисления полностью аналогичны линейному случаю Y=b*x+A. Для нахождения коэффициента a необходимо выполнить обратное преобразование a= EXP(A) .

Примечание : Построить линию тренда по методу наименьших квадратов можно также с помощью инструмента диаграммы Линия тренда ( Экспоненциальная линия тренда ). Поставив в диалоговом окне галочку в поле «показывать уравнение на диаграмме» можно убедиться, что найденные выше параметры совпадают со значениями на диаграмме. Подробнее о диаграммах см. статью Основы построения диаграмм в MS EXCEL .

Следствием замены Y=ln(y) и A=ln(a) являются дополнительные ограничения: a>0 и y>0. При уменьшении х (в сторону больш и х по модулю отрицательных чисел) соответствующее значение y асимптотически стремится к 0. Именно такую линию тренда и строит инструмент диаграммы Линия тренда. Если среди значений y есть отрицательные, то с помощью инструмента Линия тренда экспоненциальную линию тренда построить не удастся.

Чтобы обойти это ограничение используем другое уравнение экспоненциальной зависимости y=a*EXP(b*x)+с, где по прежнему a>0, т.е. при росте х значения y также будут увеличиваться. В качестве с можно взять некую заранее известную нижнюю границу для y , ниже которой у не может опускаться, т.е. у>с. Далее заменой переменных Y=ln(y-c) и A=ln(a) опять сведем задачу к линейному случаю (см. файл примера лист Экспонента2 ).

Если при росте х значения y уменьшаются по экспоненциальной кривой, т.е. a файл примера лист Экспонента3 ).

Функция РОСТ()

Еще одним способом построить линию экспоненциального тренда является использование функции РОСТ() , английское название GROWTH.

Синтаксис функции следующий:

РОСТ( известные_значения_y; [известные_значения_x]; [новые_значения_x]; [конст] )

Для работы функции нужно просто ввести ссылки на массив значений переменной Y (аргумент известные_значения_y ) и на массив значений переменной Х (аргумент известные_значения_x ). Функция рассчитает прогнозные значения Y для Х, указанных в аргументе новые_значения_x . Если требуется, чтобы экспоненциальная кривая y=a*EXP(b*x) имела a=1, т.е. проходила бы через точку (0;1), то необязательный аргумент конст должен быть установлен равным ЛОЖЬ (или 0).

Если среди значений y есть отрицательные, то с помощью функции РОСТ() аппроксимирующую кривую построить не удастся.

Безусловно, использование функции РОСТ() часто удобно, т.к. не требуется делать замену переменных и сводить задачу к линейному случаю.

Наконец, покажем как с помощью функции РОСТ() вычислить коэффициенты уравнения y= a *EXP( b *x).

Примечание : В MS EXCEL имеется специальная функция ЛГРФПРИБЛ() , которая позволяет вычислить коэффициенты уравнения y=a*EXP(b*x). Об этой функции см. ниже.

Чтобы вычислить коэффициент a (значение Y в точке Х=0) используйте формулу =РОСТ(C26:C45;B26:B45;0) . В диапазонах C26:C45 и B26:B45 должны находиться массивы значений переменной Y и X соответственно.

Чтобы вычислить коэффициент b используйте формулу:

= LN(РОСТ(C26:C45;B26:B45;МИН(B26:B45))/ РОСТ(C26:C45;B26:B45;МАКС(B26:B45)))/ (МИН(B26:B45)-МАКС(B26:B45))

Функция ЛГРФПРИБЛ()

Функция ЛГРФПРИБЛ() на основе имеющихся значений переменных Х и Y подбирает методом наименьших квадратов коэффициенты а и m уравнения y= a * m ^x.

Используя свойство степеней a mn =(a m ) n приведем уравнение экспоненциального тренда y= a *EXP( b *x)= a *e b *x = a *(e b ) x к виду y= a * m ^x, сделав замену переменной m= e b =EXP( b ).

Чтобы вычислить коэффициенты уравнения y= a *EXP( b *x) используйте следующие формулы:

= LN(ЛГРФПРИБЛ(C26:C45;B26:B45)) – коэффициент b

= ИНДЕКС(ЛГРФПРИБЛ(C26:C45;B26:B45);;2) – коэффициент a

Примечание : Функция ЛГРФПРИБЛ() , английское название LOGEST, является формулой массива, возвращающей несколько значений . Поэтому, например, для вывода коэффициентов уравнения необходимо выделить 2 ячейки в одной строке, в Строке формул ввести = ЛГРФПРИБЛ(C26:C45;B26:B45) , затем для ввода формулы вместо обычного ENTER нажать CTRL + SHIFT + ENTER .

Функция ЛГРФПРИБЛ() имеет линейный аналог – функцию ЛИНЕЙН() , которая рассмотрена в статье про простую линейную регрессию. Если 4-й аргумент этой функции ( статистика ) установлен ИСТИНА, то ЛГРФПРИБЛ() возвращает регрессионную статистику: стандартные ошибки для оценок коэффициентов регрессии, коэффициент детерминации, суммы квадратов: SSR , SSE и др.

Примечание : Особой нужды в функции ЛГРФПРИБЛ() нет, т.к. с помощью логарифмирования и замены переменной показательную функцию y= a * m ^x можно свести к линейной ln(y)=ln(a)+x*ln(m)=> Y=A+bx. То же справедливо и для экспоненциальной функции y= a *EXP( b *x).

Источник: excel2.ru

ТЕНДЕНЦИЯ (функция ТЕНДЕНЦИЯ)

Функция тенденция возвращает значения вдоль линейного тренда. Он подходит к прямой линии (с использованием метода наименьших квадратов) в массивах известные_значения_y и известные_значения_x. Функция тенденция возвращает значения y, а также линию для указанного массива новые_значения_x.

Примечание: Если у вас установлена текущая версия Office 365, вы можете ввести формулу в левую верхнюю ячейку диапазона выходных данных (в этом примере — ячейка E16), а затем нажмите клавишу Ввод , чтобы подтвердить формулу как формулу динамических массивов. В противном случае необходимо ввести формулу в качестве устаревшей формулы массива, сначала выбрав диапазон вывода (E16: E20), введите формулу в верхнюю левую ячейку выходного диапазона (E16), а затем нажмите клавиши CTRL + SHIFT + ВВОД , чтобы подтвердить его. Excel автоматически вставляет фигурные скобки в начале и конце формулы. Дополнительные сведения о формулах массива см. в статье Использование формул массива: рекомендации и примеры.

= ТЕНДЕНЦИЯ (известные_значения_y; [известные_значения_x]; [новые_значения_x]; [Конст])

Аргументы функции ТЕНДЕНЦИЯ описаны ниже.

Набор значений y, которые уже известны в соотношении y = mx + b

Если массив “известные_значения_y” содержит один столбец, каждый столбец массива “известные_значения_x” интерпретируется как отдельная переменная.

Если массив “известные_значения_y” содержит одну строку, каждая строка массива “известные_значения_x” интерпретируется как отдельная переменная.

Необязательный набор значений x, которые, возможно, уже известны в соотношении y = mx + b

Массив известные_значения_x может включать одно или более множеств переменных. Если используется только одна переменная, то аргументы “известные_значения_y” и “известные_значения_x” могут быть диапазонами любой формы при условии, что они имеют одинаковую размерность. Если используется более одной переменной, то аргумент “известные_значения_y” должен быть вектором (то есть диапазоном высотой в одну строку или шириной в один столбец).

Если аргумент “известные_значения_x” опущен, то предполагается, что это массив <1;2;3;. >того же размера, что и “известные_значения_y”.

Новые значения x, для которых тенденция возвращает соответствующие значения y.

Аргумент “новые_значения_x”, так же как и аргумент “известные_значения_x”, должен содержать по одному столбцу (или строке) для каждой независимой переменной. Таким образом, если “известные_значения_y” — это один столбец, то “известные_значения_x” и “новые_значения_x” должны иметь одинаковое количество столбцов. Если “известные_значения_y” — это одна строка, то аргументы “известные_значения_x” и “новые_значения_x” должны иметь одинаковое количество строк.

Если аргумент “новые_значения_x” опущен, то предполагается, что он совпадает с аргументом “известные_значения_x”.

Если опущены оба аргумента — “известные_значения_x” и “новые_значения_x”, — то предполагается, что это массивы <1;2;3;. >того же размера, что и “известные_значения_y”.

Логическое значение, указывающее, нужно ли принудительно использовать константу b равным 0

Читайте также:  Функция в excel консолидация

Если аргумент “конст” имеет значение ИСТИНА или опущен, то b вычисляется обычным образом.

Если аргумент “конст” имеет значение ЛОЖЬ, то b полагается равным 0 и значения m подбираются таким образом, чтобы выполнялось условие y = mx.

Сведения о том, как в Microsoft Excel подходящее для данных линия, можно найти в разделе ЛИНЕЙН.

Функцию ТЕНДЕНЦИЯ можно использовать для аппроксимации полиномиальной кривой, проводя регрессионный анализ для той же переменной, возведенной в различные степени. Например, пусть столбец A содержит значения y, а столбец B содержит значения x. Можно ввести значение x^2 в столбец C, x^3 в столбец D и т. д., а затем провести регрессионный анализ столбцов от B до D со столбцом A.

Формулы, которые возвращают массивы, должны быть введены как формулы массива с помощью клавиш CTRL + SHIFT + ВВОД, если только вы не хотите использовать текущую версию Office 365, а затем просто нажмите клавишу Ввод.

При вводе константы массива для аргумента (например, “известные_значения_x”) следует использовать точки с запятой для разделения значений в одной строке и двоеточия для разделения строк.

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community, попросить помощи в сообществе Answers community, а также предложить новую функцию или улучшение на веб-сайте Excel User Voice.

Примечание: Эта страница переведена автоматически, поэтому ее текст может содержать неточности и грамматические ошибки. Для нас важно, чтобы эта статья была вам полезна. Была ли информация полезной? Для удобства также приводим ссылку на оригинал (на английском языке).

Источник: support.office.com

Функция РОСТ

В этой статье описаны синтаксис формулы и использование роста функция в Microsoft Excel.

Описание

Рассчитывает прогнозируемый экспоненциальный рост на основе имеющихся данных. Функция РОСТ возвращает значения y для последовательности новых значений x, задаваемых с помощью существующих значений x и y. Функцию РОСТ также можно использовать для аппроксимации существующих значений x и y экспоненциальной кривой.

Синтаксис

Аргументы функции РОСТ описаны ниже.

Известные_значения_y — обязательный аргумент. Множество значений y в уравнении y = b*m^x, которые уже известны.

Если массив “известные_значения_y” содержит один столбец, каждый столбец массива “известные_значения_x” интерпретируется как отдельная переменная.

Если массив “известные_значения_y” содержит одну строку, каждая строка массива “известные_значения_x” интерпретируется как отдельная переменная.

Если хотя бы одно из чисел в known_y равно 0 или отрицательно, функция рост возвращает значение #NUM!. значение ошибки #ЗНАЧ!.

Известные_значения_x — необязательный аргумент. Множество значений x в уравнении y = b*m^x, которые уже известны.

Массив “известные_значения_x” может содержать одно или несколько множеств переменных. Если используется только одна переменная, множества “известные_значения_y” и “известные_значения_x” могут иметь любую длину, но их размерности должны совпадать. Если используется более одной переменной, аргумент “известные_значения_y” должен быть вектором (т. е. интервалом высотой в одну строку или шириной в один столбец).

Если аргумент “известные_значения_x” опущен, то предполагается, что это массив <1;2;3;. >того же размера, что и “известные_значения_y”.

Новые_значения_x — необязательный аргумент. Новые значения x, для которых функция РОСТ возвращает соответствующие значения y.

Аргумент “новые_значения_x” должен содержать столбец (или строку) для каждой независимой переменной, так же как и “известные_значения_x”. Таким образом, если массив “известные_значения_y” состоит из одного столбца, то столько же столбцов должны иметь массивы “известные_значения_x” и “новые_значения_x”. Если массив “известные_значения_y” состоит из одной строки, столько же строк должно содержаться в массивах “известные_значения_x” и “новые_значения_x”.

Если аргумент “новые_значения_x” опущен, предполагается, что он совпадает с аргументом “известные_значения_x”.

Если опущены аргументы “известные_значения_x” и “новые_значения_x”, предполагается, что каждый из них представляет собой массив <1;2;3;. >того же размера, что и “известные_значения_y”.

Конст — необязательный аргумент. Логическое значение, которое указывает, должна ли константа b равняться 1.

Если аргумент “конст” имеет значение ИСТИНА или опущен, b вычисляется обычным образом.

Если аргумент “конст” имеет значение ЛОЖЬ, то предполагается, что b = 1, а значения m подбираются таким образом, чтобы выполнялось равенство y = m^x.

Замечания

Формулы, возвращающие массивы, необходимо вводить как формулы массивов после того, как будет выделено соответствующее количество ячеек.

При вводе константы массива для аргумента (например, “известные_значения_x”) следует использовать точки с запятой для разделения значений в одной строке и двоеточия для разделения строк.

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Источник: support.microsoft.com

Функция РОСТ

Дата добавления: 2013-12-23 ; просмотров: 9090 ; Нарушение авторских прав

ПРЕДСКАЗ(х; изв_знач_y; изв_знач_x)

Функция ПРЕДСКАЗ

Прогнозирование с помощью функций

Прогнозирование экономических показателей

Для расчета ожидаемого исполнения бюджета и при составлении проекта бюджета на следующий год используется прогнозирование различных экономических показателей.

В Excel для прогнозирования используются ряд функций (ПРЕДСКАЗ, РОСТ, ТЕНДЕНЦИЯ) и диаграммы.

Функция ПРЕДСКАЗ позволяет сделать прогноз, применяя линейную регрессию диапазона известных данных или массивов (x,y). Функция ПРЕДСКАЗ вычисляет или предсказывает будущее значение по существующим значениям.

Предсказываемое значение – это y-значение, соответствующее заданному x-значению. Известные значения – это x- и y-значения, а новое значение предсказывается с использованием линейной регрессии. Эту функцию можно использовать для предсказания будущих продаж, потребностей в оборудовании или тенденций потребления.

х – это точка данных, для которой предсказывается значение.

изв_знач_y – это зависимый массив или интервал данных.

изв_знач_x – это независимый массив или интервал данных.

В качестве примера выполним расчет ожидаемой прибыли за 2006 год на основе данных о полученной прибыли в целом за год за 1999-2005 годы, используя функцию ПРЕДСКАЗ (рис. 92).

Рис. 92. Исходные данные для прогнозирования прибыли предприятия

Для расчета прибыли за 2006 год установите курсор в ячейку С12, выберите команду Функция в меню Вставка. В раскрывшемся окне Мастера функций выберите категориюфункцийСтатистическиеи затем вызовите функцию ПРЕДСКАЗ. На экране появится диалоговое окно функции ПРЕДСКАЗ. (рис. 93).

Рис. 93. Окно диалога функции ПРЕДСКАЗ

в появившемся окне введите исходные данные и получите результат (рис. 94).

Рис. 94. Результаты прогнозирования с помощью функции ПРЕДСКАЗ

Функция РОСТ рассчитывает прогнозируемый экспоненциальный рост на основании имеющихся данных. Функция РОСТ возвращает значения y для последовательности новых значений x, задаваемых с помощью существующих x- и y-значений. Функция рабочего листа РОСТ может применяться также для аппроксимации существующих x- и y-значений экспоненциальной кривой.

РОСТ(изв_знач_y; изв_знач_x; нов_знач_x; константа),

изв_знач_y – это множество значений y, которые уже известны для соотношения y = b*m^x.

изв_знач_x – это необязательное множество значений x, которые уже известны для соотношения y = b*m^x.

нов_знач_x – это новые значения x, для которых РОСТ возвращает соответствующие значения y.

константа – это логическое значение, которое указывает, требуется ли, чтобы константа b была равна 1.

Если константа имеет значение ИСТИНА или опущено, то b вычисляется обычным образом.

Если константа имеет значение ЛОЖЬ, то b полагается равном 1, а значения m подбираются так, чтобы y = m^x.

В качестве примера использования этой функции выполним расчет прибыли за 2006 год на основе данных, приведенных на рис. 92.

Установите курсор в ячейку С12, выберите команду Функция в меню Вставка, а затем выберите функцию РОСТ. На экране появится диалоговое окно функции РОСТ (рис. 95).

Рис. 95. Окно диалога функции РОСТ

Читайте также:  Функция объединения ячеек в excel

в появившемся окне введите исходные данные и получите результат (рис. 96).

Рис. 96. Результаты прогнозирования с помощью функции РОСТ

Источник: life-prog.ru

Примеры функции РОСТ и прогноз экспоненциального роста в Excel

Функция РОСТ используется для расчета прогнозируемого экспоненциального роста на основе принимаемых на вход известных массивов данных X и Y, и возвращает массив значений для зависимой переменной Y на основе полученных новых данных для массива независимой переменной X.

Метод прогнозируемого экспоненциального роста c использованием функции РОСТ

Пример 1. В ходе выполнения лабораторной работы студент должен определить зависимость между температурой количеством теплоты, содержащемся в веществе определенной массы. По условиям задания, необходимо провести 10 опытов, из которых было выполнено 8. Для получения остальных величин студент решил использовать метод прогнозируемого экспоненциального роста.

Таблица с исходными данными:

Выделяем диапазон ячеек B10:B11 и используем следующую функцию:

  • B2:B9 – диапазон известных значений количества теплоты, полученные в результате проведения опытов;
  • A2:A9 – диапазон температур, для которых проводились опыты;
  • A10:A11 – диапазон температур, для которых необходимо вычислить предполагаемые значения количества теплоты.

Для ввода формулы используем комбинацию клавиш CTRL+SHIFT+Enter так как формула должна выполняться в массиве. В результате получим:

Визуально заметно явное несоответствие найденных величин диапазону уже известных значений. В Excel существует еще одна функция для прогнозирования на основе известных значений – ТЕНДЕНЦИЯ. Воспользуемся ей и сравним полученные результаты. Для этого выделяем диапазон ячеек C10:C11 и снова в массиве вводим функцию ТЕНДЕНЦИЯ:

Как видно, синтаксические записи функций РОСТ и ТЕНДЕНЦИЯ идентичны, однако они используют различные алгоритмы для вычислений. Для ввода функции ТЕНДЕНЦИЯ снова используем комбинацию клавиш CTRL+SHIFT+Enter. В результате получим:

То есть, в данном примере функция ТЕНДЕНЦИЯ дает более точный прогноз и целесообразно использовать именно ее.

Прогноз эффективности использования рекламного бюджета по функции РОСТ

Пример 2. За 10 дней до окончания 30-дневного месяца было решено определить общую прогнозируемую прибыль сети магазинов в месяц на основании имеющихся данных за прошедшие 20 дней, на протяжении которых прибыль за день в целом постоянно увеличивалась благодаря использованию эффективной рекламы. Необходимо рассчитать, превысит ли прибыль значение в 3 млн. рублей.

Для решения используем следующую формулу:

  • B2:B21 – массив известных значений прибыли за день для первых 20 дней;
  • A2:A21 – массив дней, для которых размер прибыли уже известен;
  • A22:A31 – массив дней, для которых выполняется прогнозирование прибыли.

В результате имеем:

Для получения ответа на поставленный вопрос запишем следующую формулу:

=3000000;”Превысит 3 млн. руб”;”Менее 3 млн. руб”)’ >

Прогноз прибыли за месяц с использованием функции РОСТ в Excel

Пример 3. Экономист развивающегося предприятия ведет учет прибыли, при этом в таблице содержатся три вектора данных: месяц, число сделок, общая сумма прибыли. Необходимо спрогнозировать прибыль на следующий месяц при двух условиях:

  • Количество сделок будет равно показателю за предыдущий месяц;
  • Количество сделок увеличится на 2.

Вводим функцию РОСТ и получаем ошибку #ЗНАЧ!:

Внимание! В данном случае для прогнозирования прибыли будет использовано сочетание двух факторов: номер месяца и число сделок. Поэтому в качестве аргумента [известные_значения_x] необходимо передать диапазон значений A2:B6, а в качестве аргумента [новые_значения_x] – диапазон A7:B7.

Для определения прибыли при условии, что число сделок составит 41, запишем следующую формулу:

Теперь увеличим количество сделок на 2-е:

Как и ожидалось, прогнозируемая прибыль увеличилась. Пример наглядно демонстрирует, что для увеличения точности предсказания можно использовать 2 и более зависящих друг от друга параметров.

Функция РОСТ в Excel и особенности ее использования

Функция РОСТ имеет следующую синтаксическую запись:

  • известные_значения_y – массив данных, элементы которого характеризуют значения зависимой переменной y в уравнении y=bkx. Аргумент обязателен для заполнения.
  • [известные_значения_x] – массив данных, элементы которого соответствуют известным значениям независимой переменной x в записи y=bkx. Аргумент является необязательным.
  • [новые_значения_x] – массив с новыми значениями независимой переменной x, на основе которых функция выполняет расчет новых значений зависимой переменной y. Аргумент необязателен для заполнения.
  • [конст] – данные логического типа (ИСТИНА или ЛОЖЬ), определяющие значение константы b в уравнении y=bkx. По умолчанию (если аргумент явно не указан), а также при явном указании логического ИСТИНА, коэффициент b вычисляется обычным способом. Если данный параметр принимает значение ЛОЖЬ, дальнейшие расчеты проводятся для уравнения y=kx, поскольку значение b принимается равным единице.
  1. Элементы массива известные_значения_y должны быть взяты из диапазона положительных чисел. При наличии отрицательных значений или значений, равных 0 (нулю), результатом выполнения функции РОСТ будет код ошибки #ЧИСЛО!.
  2. В качестве аргумента [известные_значения_x] может быть передано одно либо несколько множеств значений. Размерности множеств, передаваемых в качестве первого и второго аргументов должны совпадать, если используется единственная переменная. При вводе нескольких переменных в качестве аргумента известные_значения_y должен быть передан вектор. В Excel вектором считается интервал значений, высота которого составляет одну строку, либо ширина которого равна только одному столбцу).
  3. Функция РОСТ интерпретирует каждый столбец или каждую строку массива [известные_значения_x] в качестве отдельной переменной, если массив известные_значения_y содержит только один столбец или только одну строку соответственно.
  4. Если второй аргумент функции явно не указан, то по умолчанию используется массив данных <1;2;3;…;n>, размерность которого соответствует размерности массива известные_значения_y.
  5. Массив [новые_значения_x]должен быть аналогичен по своей структуре массиву [известные_значения_x], то есть содержать строку либо столбец для каждого элемента массива известные_значения_y.
  6. Если третий аргумент рассматриваемой функции явно не указан, считается, что он тождественен значению второго аргумента данной функции. Если второй и третий аргументы опущены, они оба являются массивами типа <1;2;3;…;n>с требованиями, указанными в пункте 4.
  7. Если массив значений передается в качестве константы массива, по правилам записи массивов в Excel необходимо использовать знак «;» для разделения значений, содержащихся в одной строке, и знак «:» для разделения строк.
  1. Функция РОСТ часто используется для аппроксимации (упрощения) значений независимой (x) и зависимой (y) переменных экспоненциальной кривой.
  2. Данная функция принадлежит к классу формул массивов, поэтому при ее использовании необходимо выделить соответствующее количество ячеек, а после ввода всех требуемых аргументов следует нажать сочетание клавиш Ctrl+Shift+Enter для корректного отображения результатов.
  3. В качестве функции экспоненциального роста используется уравнение типа y=bkx.

Источник: exceltable.com

Использование встроенных функций Excel

В Excel имеется также инструмент регрессионного анализа для построения линий тренда вне области диаграммы. Для этой цели можно использовать ряд статистических функций рабочего листа, однако все они позволяют строить лишь линейные или экспоненциальные регрессии.

В Excel имеется несколько функций для построения линейной регрессии, в частности:

· НАКЛОН и ОТРЕЗОК.

А также несколько функций для построения экспоненциальной линии тренда, в частности:

Приемы построения регрессий с помощью функций ТЕНДЕНЦИЯ и РОСТ практически совпадают. То же самое можно сказать и о паре функций
ЛИНЕЙН и ЛГРФПРИБЛ. Для четырех этих функций при создании таблицы значений используются такие возможности Excel, как формулы массивов, что несколько загромождает процесс построения регрессий. Построение линейной регрессии легче всего осуществить с помощью функций НАКЛОН и ОТРЕЗОК, где первая из них определяет угловой коэффициент линейной регрессии, а вторая – отрезок, отсекаемый регрессией на оси ординат.

Задание. С таблицей данных о прибыли автотранспортного предприятия за 2000–2007 гг. (см. табл. 4.1) необходимо выполнить следующие действия:

1) получить ряды данных для линейной и экспоненциальной линии тренда с использованием функций ТЕНДЕНЦИЯ и РОСТ;

2) используя функции ТЕНДЕНЦИЯ и РОСТ, составить прогноз о прибыли предприятия на 2008 и 2009 гг.;

3) для исходных данных и полученных рядов данных построить диаграмму.

Методика выполнения. Воспользуемся исходной таблицей (см. рис. 4.4). Начнем с функции ТЕНДЕНЦИЯ.

1. Выделяем диапазон ячеек D4:D11, который следует заполнить значениями функции ТЕНДЕНЦИЯ, соответствующими известным данным о прибыли предприятия.

2. Вызываем команду Функция из меню Вставка. В появившемся диалоговом окне Мастер функций выделяем функцию ТЕНДЕНЦИЯ из категории Статистические, после чего щелкаем по кнопке ОК. Эту же операцию можно осуществить нажатием кнопки Вставка функции стандартной панели инструментов.

3. В появившемся диалоговом окне Аргументы функции вводим в поле Известные_значения_y диапазон ячеек C4:C11; в поле Известные_значения_х – диапазон ячеек B4:B11.

4. Чтобы вводимая формула стала формулой массива, используем комбинацию клавиш Ctrl + Shift + Enter.

Введенная нами формула в строке формул будет иметь следующий вид: =<ТЕНДЕНЦИЯ(C4:C11;B4:B11)>.

В результате диапазон ячеек D4:D11 заполняется соответствующими значениями функции ТЕНДЕНЦИЯ (рис. 4.7).

Рис. 4.7. Значения функций ТЕНДЕНЦИЯ и РОСТ

Для составления прогноза о прибыли предприятия на 2008 и 2009 гг. необходимо:

1) выделить диапазон ячеек D12:D13, куда будут заноситься значения, прогнозируемые функцией ТЕНДЕНЦИЯ;

2) вызвать функцию ТЕНДЕНЦИЯ и в появившемся диалоговом окне Аргументы функции ввести в поле Известные_значения_y – диапазон ячеек C4:C11; в поле Известные_значения_х – диапазон ячеек B4:B11; а в поле Новые_значения_х – диапазон ячеек B12:B13.

3) превратить эту формулу в формулу массива, используя комбинацию клавиш Ctrl + Shift + Enter.

Введенная формула будет иметь следующий вид:

а диапазон ячеек D12:D13 заполнится прогнозируемыми значениями функции ТЕНДЕНЦИЯ (см. рис. 4.7).

Аналогично заполняется ряд данных с помощью функции РОСТ, которая используется при анализе нелинейных зависимостей и работает точно так же, как ее линейный аналог ТЕНДЕНЦИЯ.

На рис. 4.8 представлена таблица в режиме показа формул.

Рис. 4.8. Таблица в режиме показа формул

Для исходных данных и полученных рядов данных построена диаграмма, изображенная на рис. 4.9.

Рис. 4.9. Графическое изображение линий тренда Прибыли
предприятия
, функций ТЕНДЕНЦИЯ и РОСТ

Задание для самостоятельной работы. С таблицей данных о прибыли автотранспортного предприятия (см. табл. 4.1) необходимо выполнить следующие действия:

1) получить ряды данных для линейной регрессии, используя функции НАКЛОН и ОТРЕЗОК, в также используя функцию ЛИНЕЙН;

2) получить ряд данных для экспоненциальной регрессии с использованием функции ЛГРФПРИБЛ;

3) составить прогноз о прибыли за 2008–2009 гг., используя вышеназванные функции;

4) построить диаграмму для исходных и полученных рядов данных.

Отметим, что, в отличие от функций ТЕНДЕНЦИЯ и РОСТ, ни одна из перечисленных выше функций (НАКЛОН, ОТРЕЗОК, ЛИНЕЙН, ЛГРФПРИБ) не является регрессией. Эти функции играют лишь вспомогательную роль, определяя необходимые параметры регрессии.

Для линейной и экспоненциальной регрессий, построенных с помощью функций НАКЛОН, ОТРЕЗОК, ЛИНЕЙН, ЛГРФПРИБ, внешний вид их уравнений всегда известен, в отличие от линейной и экспоненциальной регрессий, соответствующих функциям ТЕНДЕНЦИЯ и РОСТ.

Рекомендуемая литература: [1, 2, 5, 6, 15].

Лабораторная работа № 5
Модели линейной оптимизации в MS EXCEL

Цель: приобрести навыки в использовании настройки Поиск решения с условием максимизации или минимизации целевой функции.

Любую реальную проблему или ситуацию можно описать многими способами и на основе этого описания построить самые разнообразные формальные и математические модели. Этап разработки решения вытекает непосредственно из осознания наличия проблемы или ситуации, требующей принятия решения. На данном этапе необходимо просто четко сформулировать свою проблему, понять и сформулировать цели, которые хочется достичь в виде решения проблемы, т. е. надо четко поставить проблему, а именно:

· сформулировать цели, которые должны быть достигнуты в результате реализации найденного решения;

· указать, что считать решением проблемы (решение должно гарантировать достижение целей);

· выявить и описать возможности достижения целей;

· выявить и описать факторы, от которых может зависеть решение проблемы;

· выявить и описать ограничения, препятствующие достижению целей;

· описать возможные альтернативные способы решения проблемы.

Эти пункты составляют формальную модель проблемы. Таким образом, формальная модель – это четкое описание вашей проблемы, в которой необходимо выделить перечисленные пункты.

Очень часто математическая постановка экономических задач, связанных с управлением, может быть сформулирована в общем виде следующим образом.

Пусть имеет место некоторая целевая функция z, которая зависит от параметров х = (х1, х2, …, хn),удовлетворяющих некоторым ограничениям α:

Требуется найти такие значения параметров или функций,которые обращают величину z в максимум или минимум. Такие задачи — отыскание значений параметров, обеспечивающих экстремум функции при наличии ограничений, наложенных на аргументы, – носят общее название задач математического программирования и решаются ме­тодами теории исследования операций.

Среди задач математического программирования самы­ми простыми являются задачи линейного программирова­ния (ЗЛП).

Основная задача линейного программирования (ОЗЛП) заключается в нахождении неотрицательных значений переменных, удовлетворяющих условиям – равенствам и обращающих в максимум линейную функцию этих переменных. Допустимое решение, максимизирующее целевую функцию, называется оптимальным решением (оптимальным планом).

Инструментом для решений задач оптимизации в MS Ехсеl служит надстройка Поиск решения. Процедура поиска решения позволяет найти оптимальное значение фор­мулы, содержащейся в ячейке, которая называется целевой. Эта процедура работает с группой ячеек, прямо или косвенно связанных с формулой в целевой ячейке. Чтобы получить по формуле, содержащейся в целевой ячейке, заданный результат, процедура изменяет значения во влияющих ячейках.

Если данная надстройка установлена, то Поиск решения запускается из меню Сервис. Если такого пункта нет, следует выполнить команду Сервис Надстройки. и выставить флажок против надстройки Поиск решения.

Решение поставленной задачи состоит из выполнения следующих действий:

1) анализа ситуации и формализации исходной проблемы (поставить проблему, четко определить цели, возможные решения и факторы, влияющие на решение проблемы);

2) построения математической модели (перевод формальной модели на четкий язык математических отношений);

3) анализа математической модели и получения математического решения проблемы (анализ построенной математической модели, построение компьютерной модели задачи);

4) анализа математического решения проблемы и формирование управленческого решения (на основе математического решения принимается управленческое решение).

При решении подобных задач используется термин «производственный план», который в общем смысле представляет собой план производства продукции, выпускаемой данным предприятием, расписанный по месяцам, неделям или дням (в зависимости от длительности производственного цикла предприятия).

Задание. Предприятие «Олимп» имеет месячный цикл производства. Необходимо определить, сколько в месяц необходимо производить краски типа А и типа Б. Производственная мощность позволяет выпускать в месяц суммарно 500 т краски всех типов. Тонна краски типа А приносит в среднем 2000 руб. прибыли, а одна тонна краски типа Б – 2500 руб. Заказ на краску типа А – не менее 200 т в месяц (по договорам на поставку), краски типа Б нельзя производить более 150 т, так как большее количество трудно реализовать. По рецептуре на изготовление краски типов А и Б тратится три вида сырья (табл. 5.1).

Источник: lektsii.org